Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Cancer ; 201: 113588, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38377773

RESUMO

BACKGROUND: TLD-1 is a novel liposomal doxorubicin that compared favorably to conventional doxorubicin liposomal formulations in preclinical models. This phase I first-in-human study aimed to define the maximum tolerated dose (MTD), recommended phase 2 dose (RP2D), safety and preliminary activity of TLD-1 in patients with advanced solid tumors. PATIENTS AND METHODS: We recruited patients with advanced solid tumors who failed standard therapy and received up to 3 prior lines of palliative systemic chemotherapy. TLD-1 was administered intravenously every 3 weeks up to a maximum of 9 cycles (6 for patients with prior anthracyclines) from a starting dose of 10 mg/m2, according to an accelerated titration design followed by a modified continual reassessment method. RESULTS: 30 patients were enrolled between November 2018 and May 2021. No dose-limiting toxicities (DLT) were observed. Maximum administered dose of TLD-1 was 45 mg/m2, RP2D was defined at 40 mg/m2. Most frequent treatment-related adverse events (TRAE) of any grade included palmar-plantar erythrodysesthesia (PPE) (50% of patients), oral mucositis (50%), fatigue (30%) and skin rash (26.7%). Most common G3 TRAE included PPE in 4 patients (13.3%) and oral mucositis in 2 (6.7%). Overall objective response rate was 10% in the whole population and 23.1% among 13 patients with breast cancer; median time-to-treatment failure was 2.7 months. TLD-1 exhibit linear pharmacokinetics, with a median terminal half-life of 95 h. CONCLUSIONS: The new liposomal doxorubicin formulation TLD-1 showed a favourable safety profile and antitumor activity, particularly in breast cancer. RP2D was defined at 40 mg/m2 administered every 3 weeks. (NCT03387917).


Assuntos
Neoplasias da Mama , Doxorrubicina/análogos & derivados , Neoplasias , Estomatite , Humanos , Feminino , Neoplasias/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/etiologia , Polietilenoglicóis , Estomatite/etiologia , Dose Máxima Tolerável , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
2.
Int J Pharm ; 654: 123942, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38403086

RESUMO

In the century of precision medicine and predictive modeling, addressing quality-related issues in the medical supply chain is critical, with 62 % of the disruptions being attributable to quality challenges. This study centers on the development and safety of liposomal doxorubicin, where animal studies alone often do not adequately explain the complex interplay between critical quality attributes and in vivo performances. Anchored in our aim to elucidate this in vitro-in vivo nexus, we compared TLD-1, a novel liposomal doxorubicin delivery system, against the established formulations Doxil® and Lipodox®. Robust in vitro-in vivo correlations (IVIVCs) with excellent coefficients of determination (R2 > 0.98) were obtained in the presence of serum under dynamic high-shear conditions. They provided the foundation for an advanced characterization and benchmarking strategy. Despite the smaller vesicle size and reduced core crystallinity of TLD-1, its release behavior closely resembled that of Doxil®. Nevertheless, subtle differences between the dosage forms observed in the in vitro setting were reflected in the bioavailabilities observed in vivo. Data from a Phase-I clinical trial facilitated the development of patient-specific IVIVCs using the physiologically-based nanocarrier biopharmaceutics model, enabling a more accurate estimation of doxorubicin exposure. This advancement could impact clinical practice by allowing for more precise dose estimation and aiding in the assessment of the interchangeability of generic liposomal doxorubicin.


Assuntos
Doxorrubicina/análogos & derivados , Polietilenoglicóis , Animais , Humanos , Disponibilidade Biológica , Medicamentos Genéricos
3.
Nat Commun ; 8(1): 1129, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29066718

RESUMO

Endothelial cells (EC) play a key role in atherosclerosis. Although EC are in constant contact with low density lipoproteins (LDL), how EC process LDL and whether this influences atherogenesis, is unclear. Here we show that EC take up and metabolize LDL, and when overburdened with intracellular cholesterol, generate cholesterol crystals (CC). The CC are deposited on the basolateral side, and compromise endothelial function. When hyperlipidemic mice are given a high fat diet, CC appear in aortic sinus within 1 week. Treatment with cAMP-enhancing agents, forskolin/rolipram (F/R), mitigates effects of CC on endothelial function by not only improving barrier function, but also inhibiting CC formation both in vitro and in vivo. A proof of principle study using F/R incorporated into liposomes, designed to target inflamed endothelium, shows reduced atherosclerosis and CC formation in ApoE -/- mice. Our findings highlight an important mechanism by which EC contribute to atherogenesis under hyperlipidemic conditions.


Assuntos
Apolipoproteínas E/metabolismo , Aterosclerose/metabolismo , Colesterol/metabolismo , Células Endoteliais/metabolismo , Hiperlipidemias/metabolismo , Animais , Aorta/metabolismo , Apolipoproteínas E/genética , Artérias Carótidas/metabolismo , Células Cultivadas , Colforsina/farmacologia , Dieta Hiperlipídica , Endotélio Vascular/metabolismo , Feminino , Artéria Femoral/metabolismo , Humanos , Lipoproteínas LDL/metabolismo , Lipossomos/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rolipram/farmacologia , Seio Aórtico/metabolismo
4.
J Virol ; 89(3): 1550-63, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25392225

RESUMO

UNLABELLED: The envelope of influenza A viruses contains two large antigens, hemagglutinin (HA) and neuraminidase (NA). Conventional influenza virus vaccines induce neutralizing antibodies that are predominantly directed to the HA globular head, a domain that is subject to extensive antigenic drift. Antibodies directed to NA are induced at much lower levels, probably as a consequence of the immunodominance of the HA antigen. Although antibodies to NA may affect virus release by inhibiting the sialidase function of the glycoprotein, the antigen has been largely neglected in past vaccine design. In this study, we characterized the protective properties of monospecific immune sera that were generated by vaccination with recombinant RNA replicon particles encoding NA. These immune sera inhibited hemagglutination in an NA subtype-specific and HA subtype-independent manner and interfered with infection of MDCK cells. In addition, they inhibited the sialidase activities of various influenza viruses of the same and even different NA subtypes. With this, the anti-NA immune sera inhibited the spread of H5N1 highly pathogenic avian influenza virus and HA/NA-pseudotyped viruses in MDCK cells in a concentration-dependent manner. When chickens were immunized with NA recombinant replicon particles and subsequently infected with low-pathogenic avian influenza virus, inflammatory serum markers were significantly reduced and virus shedding was limited or eliminated. These findings suggest that NA antibodies can inhibit virus dissemination by interfering with both virus attachment and egress. Our results underline the potential of high-quality NA antibodies for controlling influenza virus replication and place emphasis on NA as a vaccine antigen. IMPORTANCE: The neuraminidase of influenza A viruses is a sialidase that acts as a receptor-destroying enzyme facilitating the release of progeny virus from infected cells. Here, we demonstrate that monospecific anti-NA immune sera inhibited not only sialidase activity, but also influenza virus hemagglutination and infection of MDCK cells, suggesting that NA antibodies can interfere with virus attachment. Inhibition of both processes, virus release and virus binding, may explain why NA antibodies efficiently blocked virus dissemination in vitro and in vivo. Anti-NA immune sera showed broader reactivity than anti-HA sera in hemagglutination inhibition tests and demonstrated cross-subtype activity in sialidase inhibition tests. These remarkable features of NA antibodies highlight the importance of the NA antigen for the development of next-generation influenza virus vaccines.


Assuntos
Soros Imunes/imunologia , Vírus da Influenza A/imunologia , Neuraminidase/imunologia , Proteínas Virais/imunologia , Animais , Anticorpos Antivirais/imunologia , Linhagem Celular , Galinhas , Cães , Influenza Aviária/prevenção & controle , Neuraminidase/administração & dosagem , Suínos , Proteínas Virais/administração & dosagem , Internalização do Vírus , Liberação de Vírus/imunologia , Eliminação de Partículas Virais
5.
J Gen Virol ; 95(Pt 8): 1634-1639, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24814925

RESUMO

Pseudotype viruses are useful for studying the envelope proteins of harmful viruses. This work describes the pseudotyping of vesicular stomatitis virus (VSV) with the envelope glycoproteins of highly pathogenic avian influenza viruses. VSV lacking the homotypic glycoprotein (G) gene (VSVΔG) was used to express haemagglutinin (HA), neuraminidase (NA) or the combination of both. Propagation-competent pseudotype viruses were only obtained when HA and NA were expressed from the same vector genome. Pseudotype viruses containing HA from different H5 clades were neutralized specifically by immune sera directed against the corresponding clade. Fast and sensitive reading of test results was achieved by vector-mediated expression of GFP. Pseudotype viruses expressing a mutant VSV matrix protein showed restricted spread in IFN-competent cells. This pseudotype system will facilitate the detection of neutralizing antibodies against virulent influenza viruses, circumventing the need for high-level biosafety containment.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Técnicas de Visualização da Superfície Celular/métodos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A/imunologia , Influenza Aviária/virologia , Neuraminidase/imunologia , Proteínas Virais/imunologia , Animais , Aves , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A/genética , Neuraminidase/genética , Testes de Neutralização , Vesiculovirus/genética , Proteínas Virais/genética
6.
PLoS One ; 8(6): e66059, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23762463

RESUMO

Highly pathogenic avian influenza viruses (HPAIV) of subtype H5N1 not only cause a devastating disease in domestic chickens and turkeys but also pose a continuous threat to public health. In some countries, H5N1 viruses continue to circulate and evolve into new clades and subclades. The rapid evolution of these viruses represents a problem for virus diagnosis and control. In this work, recombinant vesicular stomatitis virus (VSV) vectors expressing HA of subtype H5 were generated. To comply with biosafety issues the G gene was deleted from the VSV genome. The resulting vaccine vector VSV*ΔG(HA) was propagated on helper cells providing the VSV G protein in trans. Vaccination of chickens with a single intramuscular dose of 2×108 infectious replicon particles without adjuvant conferred complete protection from lethal H5N1 infection. Subsequent application of the same vaccine strongly boosted the humoral immune response and completely prevented shedding of challenge virus and transmission to sentinel birds. The vaccine allowed serological differentiation of infected from vaccinated animals (DIVA) by employing a commercially available ELISA. Immunized chickens produced antibodies with neutralizing activity against multiple H5 viruses representing clades 1, 2.2, 2.5, and low-pathogenic avian influenza viruses (classical clade). Studies using chimeric H1/H5 hemagglutinins showed that the neutralizing activity was predominantly directed against the globular head domain. In summary, these results suggest that VSV replicon particles are safe and potent DIVA vaccines that may help to control avian influenza viruses in domestic poultry.


Assuntos
Virus da Influenza A Subtipo H5N1/patogenicidade , Influenza Aviária/prevenção & controle , RNA/administração & dosagem , Replicon/genética , Vírion/genética , Animais , Western Blotting , Galinhas , Feminino , Imunofluorescência , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Virus da Influenza A Subtipo H5N1/imunologia , Influenza Aviária/imunologia , Influenza Aviária/virologia , RNA/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vacinação , Vesiculovirus/genética , Eliminação de Partículas Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...